Perovskite PV outlook promising at this stage says IDTechEx

Applications enabled by perovskite PV explored in the new IDTechEx report “Perovskite Photovoltaics 2023-2033”. Source: IDTechEx

Perovskite photovoltaics (PV) emerged as a field in 2009 and has tantalized solar industry forecasters ever since with its promise of dramatically boosting solar efficiencies. Perovskite refers to a crystalline structure rather than to a specific element such as silicon, and the solar cells are made from a chemical solution affixed to a substrate. Perovskite photovoltaics have demonstrated remarkable efficiencies, with new applications enabled by their low cost, thin film architecture, and tuneable absorption.

Aurora Solar promotion

Sales and Marketing Month sponsor

Get Aurora AI & Get Back to Summer

Let Aurora AI do the heavy lifting for you so you can get out of the office and into the pool. See how Aurora can speed up your sales & design with one-click design magic. Learn more here

Is the perovskite revolution here yet? Will it ever be? In a new report, “Perovskite Photovoltaics 2023-2033,” analysts at IDTechEx explore the diverse range of opportunities presented by perovskite PV, including gaps in demand, supply chain innovation, and emerging applications.

Remarkably rapid efficiency gains

Record efficiencies of perovskite are already on par with those of silicon PV, a technology with decades of research behind it. Additionally, perovskite PV does not use toxic or rare materials, and the manufacturing is well-suited to scalable solution-based deposition methods. This gives perovskite PV an edge over the existing dominant thin film alternatives such as cadmium telluride (CdTe) and copper indium gallium selenide (CIGS), which suffer from expensive synthesis and material scarcity.

Despite the demonstration of high-efficiency perovskite solar cells, commercial adoption is limited by concerns over long-term stability. Perovskites are well-known to degrade following exposure to environmental factors such as heat, air, humidity, and UV light. Encapsulation techniques and material engineering are crucial to preventing degradation of the perovskite film – solving these high-value problems is a compelling commercial opportunity.

Enabling emerging applications

Perovskite PV is very versatile. It can be used in mainstream applications such as in solar farms and rooftops. Since the weight of a perovskite module can be at least 90 percent lighter than a silicon module, it is particularly well-suited to novel applications as well such as vertical building integration and structures with low weight tolerance. These are applications that mainstream silicon-based PV is not compatible with and therefore provide a niche opportunity for perovskite PV.

Flexible solar modules are another exciting recent development in photovoltaics. Thin film perovskite PV is naturally well-suited to flexible designs. Conformality allows for greater practicality and aesthetic control when integrating into building facades as well as electronic devices.

With the emergence of Internet of Things (IoT), perovskite PV could also be a very suitable choice for self-powered smart electronics. Batteries are typically used to power small appliances. Where hundreds or thousands of individual electronics are in use, replacing batteries can be unsustainable both in terms of labor costs and number of disposable batteries. Employing low-cost PV powered devices with lifespans of 10 years could be far more economical. There is already very early-stage commercialization of self-powered electronics using organic PV. This market is still very small and there is plenty of room for new entrants. Perovskite PV promises higher efficiencies and simpler synthesis than organics, and potentially longer lifespans.


The future appears optimistic for perovskite PV, since the technology has advanced much more rapidly than any other photovoltaic technology. Unlike CdTe and CIGS active layers, perovskites do not require rare or expensive raw materials. The synthesis is straightforward and deposition can be carried out without the need for a vacuum or high temperatures.

The possibility of creating flexible devices also opens up new applications that mainstream silicon PV cannot target due to their bulk, weight, and rigidity. Despite the promising advantages, concerns surrounding the lifespan of perovskite solar cells remain at the forefront of the discussion.

This report, “Perovskite Photovoltaics 2023-2033”, gives 10-year market forecasts, key player analysis, technology benchmarking, and identification of core application areas. It examines the current status and latest trends in photovoltaic technology, supply chain, and manufacturing know-how. It also identifies the key challenges, competition, and innovation opportunities facing perovskite PV. Technical analysis and emerging trends are based on research and primary information with key and emerging players.

Have you checked out our YouTube page?

We have a ton video interviews and additional content on our YouTube page. Recently we debuted Power Forward! -- a collaboration with BayWa r.e. to discuss higher level industry topics as well as best practices / trends for running a solar business today.

Our longer running side project is The Pitch -- in which we have awkward discussions with solar manufacturers and suppliers about their new technology and ideas so that you don't have to. We've discusses everything from residential rail-less deck attaching and home solar financing to large-scale energy storage value stacking and utility-driven new home solar + storage microgrids.

We also post our Project of the Year announcements there! Interviews with this year's winners will be up starting the week of Nov. 8. Head there and subscribe today to stay on top of all this extra stuff.

Tags: ,