Three keys for reducing commercial demand charges with solar-plus-storage systems

Researchers from Berkeley Lab and the National Renewable Energy Laboratory (NREL) show the dynamic tag team potential of solar plus storage systems for reducing demand charges in commercial applications.

Solar on its own doesn’t do much to fight demand charges. The report, Solar + Storage Synergies for Managing Commercial-Customer Demand Charges, seeks to assess the incremental demand reductions from adding behind-the-meter storage in conjunction with solar. To do so, the study estimates demand charge savings from solar + storage systems based on simulations across a large number of commercial building types and locations, over a multi-year period, with varying solar and storage system sizes and a range of demand charge designs.

Key findings

solar storage demand charge

Solar + storage exhibit consistent synergies for demand charge management. In nearly every simulation, solar + storage co-deployed in commercial buildings result in a greater demand reduction than the sum of what each would achieve alone. The greatest synergies occur for buildings with broad daytime peak loads that extend into early morning and/or evening hours (as shown in the schematic above) and for locations with a high degree of intermittent cloud cover where storage can buffer transient drops in solar production. The strongest solar + storage synergies in our analysis were found for hospitals and office buildings, and for most building types in Miami, though these are not necessarily the cases with the greatest absolute level of demand reduction.

Demand reductions from solar + storage are highly customer-specific. Demand reductions from solar + storage systems vary substantially from customer to customer, depending on commercial building type and location. The greatest demand reductions tend to occur for buildings with relatively narrow afternoon peak loads and in locations with the most consistent sunshine. These are the same conditions in which solar, on a stand-alone basis, tends to yield the greatest demand reductions, though the reductions may be considerably greater with the addition of storage.

Demand charge reductions from solar + storage depend on demand charge design. Solar + storage systems yield greater demand reductions under demand charge designs that are based on pre-defined peak periods; this is in contrast to the more typical “non-coincident” demand charge design that is based on the customer’s maximum demand at any point over the course of the month. Separate from that design issue, demand charge reductions from solar + storage also tend to be greater for demand charge designs where billing demand is measured over relatively short (e.g., 15-minute or 30-minute) intervals.

Have you checked out our YouTube page?

We have a ton video interviews and additional content on our YouTube page. Recently we debuted Power Forward! -- a collaboration with BayWa r.e. to discuss higher level industry topics as well as best practices / trends for running a solar business today.

Our longer running side project is The Pitch -- in which we have awkward discussions with solar manufacturers and suppliers about their new technology and ideas so that you don't have to. We've discusses everything from residential rail-less deck attaching and home solar financing to large-scale energy storage value stacking and utility-driven new home solar + storage microgrids.

We also post our Project of the Year announcements there! Interviews with this year's winners will be up starting the week of Nov. 8. Head there and subscribe today to stay on top of all this extra stuff.


Comments are closed here.